Exercise 3.3.15

Consider a function $f(x)$ that is odd around $x=L / 2$. Show that the even coefficients (n even) of the Fourier cosine series of $f(x)$ on $0 \leq x \leq L$ are zero.

Solution

The Fourier cosine series expansion of $f(x)$, a piecewise smooth function defined on $0 \leq x \leq L$, is given by

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L},
$$

where

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \\
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

Replace x with $x+L / 2$ to translate everything to the left by $L / 2$ units.

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) d x=0 \\
& A_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right] d x
\end{aligned}
$$

Consider the even coefficients by setting $n=2 k$.

$$
\begin{aligned}
A_{2 k} & =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left[\frac{2 k \pi}{L}\left(x+\frac{L}{2}\right)\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left(\frac{2 k \pi x}{L}+k \pi\right) d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left(\cos \frac{2 k \pi x}{L} \cos k \pi-\sin \frac{2 k \pi x}{L} \sin k \pi\right) d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[(-1)^{k} \cos \frac{2 k \pi x}{L}-(0) \sin \frac{2 k \pi x}{L}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)(-1)^{k} \cos \frac{2 k \pi x}{L} d x \\
& =\frac{2(-1)^{k}}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \frac{2 k \pi x}{L} d x
\end{aligned}
$$

Note that f is odd, and cosine is even. The product of an odd function and an even function is odd, and the integral of an odd function over a symmetric interval is zero.

$$
A_{2 k}=\frac{2(-1)^{k}}{L}(0)=0
$$

Therefore, A_{0} and the even coefficients in the Fourier cosine series expansion of $f(x)$ are zero if f is odd with respect to $x=L / 2$.

